SURVEY

VIBRATIONAL NONEQUILIBRIUM IN GASES

A. 1. Osipov UDC 533.7

§1. Introduction

The development of laser physics, laser chemistry, and laser engineering has stimulated interest in
studying the state of incomplete statistical equilibrium. The present survey is devoted to vibrational kinetics
in gases, i.e., to that division of the kinetic theory of gases which describes the state of incomplete statistical
equilibrium due to the nonequilibrium energy distribution over the vibrational degrees of freedom. The vibra-
tional relaxation processes which shape the equilibrium or nonequilibrium vibrational distributions proceed
considerably more slowly than the equilibrium build-up processes in the translational and rotational degrees of
freedom, and considerably more rapidly than the chemical reactions. In a first approximation this permits con-
sidering vibrational relaxation to be isolated in the background of the already terminated rapid processes of
equilibrium build-up in the translational and rotational degrees of freedom and the chemical reactions which
still have not started. The comparative slowness of the vibrational relaxation governs its exceptional role in
the production of molecular media with a population inversion and in the shaping of the quasistationary dis-
tribution which permits active interference during the chemical reaction.

The history of the development of vibrational kinetics goes back several decades. The beginning of its
first stage refers to the late 1920's and is associated with ultra-acoustic investigations. Namely, in those
years Hertzfeld and Rice [1] assumed that anomalous absorption and dispersion of ultrasonic waves in poly-
atomic gases, which had repeatedly been observed earlier, are explained by the slow exchange of energy
between the translational and vibrational degrees of freedom during molecular collisions. The Hertzfeld and
Rice ideas were later developed by Kneser [2], Rutgers [3], Landau and Teller [4], Leontovich [5], et al., where-
upon a relaxation theory of sound propagation in gases was produced [6]. The Einstein paper [7] in 1920 was
the prototype of this theory.

The second stage in the development of vibrational kinetics is associated with the study of shock waves.
Bethe and Teller [8] and Zel'dovich [9] were the first to turn attention to the role of vibrational relaxation in
shock broadening.

The interest in shock-wave investigation grew abruptly in connection with the development of rocketry in
the forties and fifties, which contributed to the appearance and perfection of shock-tube techniques. The appli-
cation of shock tubes disclosed new possibilities for the study of vibrational relaxation under conditions which
differed radically from the conditions in ultrasonic fields. As a rule, ultra-acoustic measurements encom-
passed the room~temperature range. Shock tubes permitted the study of vibrational relaxation in the tempera-
ture range from thousands to tens of thousands of degrees. This was naturally a stimulus for new theoretical
investigations. A whole series of results was obtained: The computation of transition probabilities during
molecular collisions was perfected, vibrational—translational and vibrational—vibrational energy exchange
processes inpure gases and mixtures were studied, the role of excited-moleculesources was examined, a
. relaxation theory of thermal dissociation was created, etc. The results of these investigations are generalized
in the surveys [10-12] and monographs [13-18].

The third stage in the development of vibrational kinetics is related to successes in laser physics. The
sixties were marked by the explosive development of laser engineering. The use of molecular gases as the
active lasing medium permitted obtaining high generation powers in a broad spectrum range from the near
infrared to the submillimeter domain. Laser development caused the further development of vibrational kinet-
ics which was particularly associated with a detailed analysis of the vibrational level populations, the investi-
gation of relaxation in substantially nonequilibrium conditions in both diatomic and polyatomic gases, and taking
account of the influence of different physical factors on the process. On the basis of the representations
developed, for vibrational kinetics, the mechanism of laser operation at vibrational—rotational transitions was
successfully conceived, population inversions for some of them were successfully estimated, and funda-
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mental dependences on the external parameters were successfully constructed. The results of these investi-
gations are elucidated in the survey [19] (see [20] as well).

i The development of vibrational kinetics also stimulated the study of physical processes in gasdynamics,
chemical kinetics, and physics of the atmosphere. It has become perfectly clear at this time that the produc-
tion of chemical kinetics at the molecular level is impossible without an analysis of the states of incomplete
statistical equilibrium which occur during chemical reactions. A study of molecular chemical kinetics addi-
tionally stimulated the development of laser engineering, by disclosing new possibilities for purposeful action
on chemical reactions. Presently, the most prospective method for such action is activation of molecules by
selective heating of certain vibrational degrees of freedom because of absorption of laser radiation. Namely,
by this means a number of interesting experimental and theoretical results have been obtained [21-32].

The survey performed has shown how interest in studying vibrational kinetics, which initially occurred in
molecular acoustics, has gradually enclosed the most diverse regions of physics, chemistry, and engineering.
At this time the study of vibrational nonequilibrium is an inherent part of molecular kinetics, thermophysics,
physics of the atmosphere, molecular acoustics, physical gasdynamics, chemical kinetics, etc. There are tens
and hundreds of papers in each of these areas; however, survey papers where the theoretical principles of
vibrational kinetics, including the attainments of recent years, would be elucidated from a single aspect are
almost absent. The purpose of this survey is to fill this gap, and it is devoted to elucidating the general regu-
larities of vibrational kinetics, i.e., to the discussion of possible types of distributions inthevibrational degrees
of freedom.

§2. Kinetic Equations

The description of vibrational relaxation kinetics is performed in the terminology of populations of the
vibrational levels of molecules, i.e., in the terminology of the density of numbers of molecules in a given
vibrational state. It is hence considered that the molecules in this vibrational state have an equilibrium dis-
tribution in the translational and rotational energies with respect to which the average is taken. Kinetic equa-
tions analogous to the Boltzmann kinetic gas equation are written (and not derived) for the populations from
considerations of the balance of the numbers of particles at each vibrational level. For the most typical case
of a binary mixture of diatomic molecules with chemical reactions and pumping, these equations have the form

dx,
dt

:IVT(xmv xn)+1l"V(xm, xn)+1VV' (ym’ xn)+1p+ IO’ (2'1)
n=0,1,2, ..., &

and analogous equations for dyp/dt. Here xp and yp are the populations of the n-th vibrational levels of the
molecules A and B, the number k denotes the last discrete vibrational level of the molecule A, and the I are
collision operators describing the change in the number of molecules at the n-th vibrational level because of
the collisions accompanied by vibrational—translational (VT) energy exchange (Iy ), vibrational—vibrational
exchange with molecules of this same species (Iyy, VV exchange), and with molecules of another species (Iyvy?,
VV' exchange), as well as because of the chemical reactions Iy and pumping Iy.

The collision operators IyT, Iyy and Iyy!, have an identical structure of the type

[ (S %) = 3 Pty — 3 P (2.2)
n n
where .@%m is the number of elementary acts per unit time at which the vibrational transition m—n occurs in

the molecule A.

The first member in (2.2) describes the change in the number of molecules at the n-th vibrational level
because of collisions for which molecule transitions occur to the level n from all the remaining vibrational
levels, and the second member describes the inverse proéess, i.e.,thedrift of molecules from the levelnto all the
remaining vibrational levels because of transitions.

For VT exchange

P = Z3aNaPity + Z3pN sPos, (2.3)
where 23\ A Ap is the number of collisions per unit time of the molecule A with the molecules A or B for a
’ : - AA,AB
unit concentration of the components A or B, respectively; Ns= Exn, Npg= Eyn, P " are the probabilities of

n=0 n=0
the vibrational m—n transition in the molecule A during collisions with the molecule A or B referred to single
collision,
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The probabilities of the direct and reverse transitions PﬁlA and P A (or PA and P ) are connected
by the detailed equilibrium relation
P exp (— emfkT) = Phn ™ exp (— en/kT), 2.4)

where SIA}} eff are energies of vibrational levels of the molecules A. An analogous relationship for the vibra-
tional transition probabilities of the molecules B has the form
Phz P4 exp (— em/kT) PR B exp (— £ 1AT). (2.5)

The T in the relationships (2.4) and (2.5) is the temperature of the translational degrees of freedom (the gas
temperature).

For VV exchange
Prin= Zoa 3, G (A, A%, 2.6)
5,

where Q%H(A, A) is the probability of VV exchange referred to one collision at which the colliding molecules
A in the vibrational states m and s go over into the states n and , respectively, after collision.

The probability of the VV exchange is also connected by the detailed equilibrium relationship

o

! A 1 A
@i, e (2 8) = 0 (4, ey (D) (2.7)

The relationship for the probabilities of VV exchange of the molecules B is obtained from (2.7) by replacing A
by B.

For VV' exchange
sl
Prnn = Zap 2 Qmsn (A, B}y, (2.8)
s,!

where Q'Sl (A, B) is the probability of VV' exchange referred to one collision between a molecule A and a
molecule B for which the molecule makes the transition from the vibrational state m to the state n while the
melecule B goes from the state s to the state [.

Like the probabilities of the VV process, the probabilities of VV'exchange are connected by the detailed
equilibrium relationship

s = el [ eB-fed
Q,;Z:(A, B)exp( kT ) Q”m\A B)exp( lkT > (2.9)

Let us emphasize that the collision operators Iyy and Iyys in (2.1) are nonlinear operators. Specific
numerical values for the probabilities of VT, VV, and VV' exchange during the collisions of different molecules
are presented in the surveys [33, 34] (see the survey [35], also).

The form of the operators I, and I, is determined by the specific reaction mechanism and the specific
kind of pumping. For example, in the case of pumping by resonant laser radiation absorbed during the vibra-
tional transition 0—n with the probability Wyn

[p = Wo,ko — Wioky- (2.10)

The second member in (2.10) describes the induced radiation during the transition n—~0. The absorption Wyp
and stimulated radiation Wy probabilities (the Einstein coefficients if Wy, and Wy, refer to unit spectrum
density of the radiation) are related by the relationship

&oWon = 8, Wpo, (2.11)

where gy and gy, are the statistical weights of the levels. In the absence of degeneration gy=gn=1, hence Wyp=
Wpo- The absorption probability Wyn is proportional to the number of photons for first-order processes,hence

Gon !
W,, =~ (2.12)

where,gyp is the radiation-absorptioncross section at the transition 0—n, I is the radiation intensity, and hwon=
€n— & . If the induced transition occurs between the vibrational—rotational levels (v, j — vy, jy), then (2.11)
takes the form

g (i) (11) (2.13)

n (1) n (11)
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where n(j) and g(j) are the population and statistical weight of the rotational level j. Under rapid rotational
relaxation conditions

n(j) = g(j) exp (— &;/kT) Zrgy, : (2.14)
where € is the energy of the rotational level, and Z,.,; is the rotational statistical sum.

Only induced radiation and absorption processes are taken into account in (2.10). At low pressures the
spontaneous radiation processes also turn out to be substantial. The corresponding contribution to the right
side of (2.1) has the form

2 Amnxm - 2 Anmxm ’ (215)
m>n m<n

where Ay, are the probabilities of spontaneous radiation transitions m—n (m>n),

The expression governing the increment of particles in the case of pumping by electron impact is analo-
gous in form

]p: NeZKmilx;n—NeZKnnzxn’ (216)

where Ng is the electron concentration and Kyp is the probability of the vibrational transition m=n under
electron impact.

As before, the probabilities of the direct and reverse transitions Ky and Kpyy are connected by the
detailed equilibrium relationship. However, in contradiction to (2.5), the ratio Kpypn/Kpm is not determined by
the gas temperature but by the electron temperature (or its analog if the electron distribution is not Maxwellian).
Specific data about the probabilities of vibrational excitation of molecules by electron impact are contained in
the survey [24]. The form of the operator L. describing the change in the number of particles in chemical reac-
tions is determined by the specific reaction mechanism. For example, in the case of a dissociation reaction
occurring by means of molecule transitions from a discrete vibrational state fo a continuous state (and reverse
processes) induced by collisions,

k k
I = EKan31~ 3 Kyt (2.17)
n=>0 n=0
where Kan% and Kndxn is the number of recombination and dissociation elementary acts (per unit time) which
accompanied the molecule transition from the continuous spectrum at the n-th vibrational level, and conversely.
The recombination Kgn and dissociation Kpng probabilities (or the rate constants if Ky, and Kpg refer to unit
concentration of collision partners) are related by the effective mass law, which is a variant of the detailed
equilibrium relationships.

A chemical reaction changes the number of particles in a system, hence, the system (2.1) must generally
be supplemented by the balance equations for the concentration of atoms and other reaction products. Cor-
responding changes must also be introduced into (2.3) to take account of VT exchange during collisions with
atoms and other reaction products. This latter consideration will not include chemical reactions, hence, these
questions remain outside the limits of the present survey (see [37, 38] for more details).

Before analyzing the solution of the system (2.1) we list the main physical assumptions under which (2.1)
is valid. It was assumed in writing the system (2.1) that the buildup of equilibrium in the translational and
rotational degrees of freedom occurs more rapidly than any of the vibrational relaxation processes under con-
sideration, including the pumping. This condition imposes a constraint on the intensity of the external pumping.
Namely, the characteristic time associated with the pumping should be greater than the time of rotational
relaxation. In the opposite case, rotational nonequilibrium must be taken into account, which results in a whole
number of new effects (see [39], for instance).

It should also be stressed that writing (2.1) from considerations of the balance in the number of particles
is not a derivation in the ordinary sense of this word. Balance considerations permit writing an equation just
for the diagonal elements of the density matrix which have the meaning of vibrational level populations. The
question of the nondiagonal density matrix elements and their corresponding coherent effects is not substantial-
ly worked out in the theory of vibrational relaxation. Moreover, (2.1) was written from the very beginning
for single-particle distribution functions. The question of the reduction of multiparticle distribution functions
to single-particle distribution functions, i.e., the question of the disintegration of correlation during vibra~
tional relaxation,has hardly been discussed in the literature [40, 41].
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Finally, the system (2.1) takes account of only binary collisions. The simultaneous collisions of three
and more particles are not examined in (2.1). Therefore, (2.1) is not applicable to high density gases.

§3. Hierarchy of Quasiequilibrium Distributions

The equilibrium distribution in a relaxing system described by (2.1) with Ip:II‘: 0 is determined from
the condition of an extremum of the thermodynamic potentials. If we limit ourselves to the consideration of
vibrational relaxation under conditions of constant temperature of the translational degrees of freedom, then
it is convenient to introduce the free energy of the vibrational degrees of freedom

F=E—TS, where E=Zelx, - Zely,,
(3.1)
S = —FkSx, (Inx,—1)—£kZy, (Iny, —1)
corresponding to the energy and entropy of the vibrational degrees of freedom of the molecules A and B per
unit volume.

Taking account of (2.1), the following expression can be obtained from (3.1) for the production of the
free energy: .
_ X
L Y E ﬁén(ln —,’i)(x' —x)
dt 2 K )"

Ny / x'x
ETZY, Z IQ,;En (4, A) (In x’ﬂxf )(x;nx;—x,;x;) -

1
4 m,n,s, s

1 ‘ Y\—p5 ( yr'; ) , "o
- — kT Pon {In = —y) -
5 b ( ) U8

m

Y, @, B (n 222 ) — v +

mvs

+— KTZY
4 m.n,s,i
W Xy,

b K728 ¥ T4, B)(ln It )(x;”y;——x'y;). (3.2)

2 %9 "

Lo
where Pl = P exp(— e BIkT);
Qnn (4, A) = Qun(4, A)exp (—— »Eék;r, 8?)
4+ o2
—kT—)
X, = X, exp(e4/kT); y,, =y, exp(eB/kT).

’

’

Qmn (A B)= QmalA, B) exp (—

Each member in the right side of (3.2) has the form (ln a/b)(b = a), hence, in conformity with the deductions of

phenomenological thermodynamics
_4F -, (3.3)
dt

and the extremal value of the thermodynamic potential is determined by the distribution satisfying the system
of equations
{b —a =0} (3.4)

A unique solution corresponding to the extremum of the free energy is the equilibrium solution determined
from the conditions x},=xh and y;, =yp» 1-€.,
Xy = Xoexp(—eA/kT), y,, = yyexp(— eB/kT). (3.5)

Meanwhile, the structure of (3.2) is such that we can speak of relative extremums. Indeed, three characteristic
time scales corresponding to
VT exchange tyr ~ (9’6‘1)_1, (-@lgl)_l;
L01 _ ,01 _
VV' exchange Tyyr ~ [ZAsN5Q 1w0{4, B, [ZAsN AQ (4, B ™Y (3.8)
VV exchangetyy ~ [Z3aNaQ1o (A, AN7Y, [Z3sNsQ10 (B, B)™!

figure in (2.1) [(as well as in (3.2)]. As a rule
Tyy K Tyy << Tyr. (3.7)
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The inequality (3.7) permits consideration of the system (2.1) in different time scales. One process predomi-
nates during each such scale (the preceding scale is considered terminated at each instant and only its result
is important for later, while the next has not yet started). Each of the processes listed introduced its con-
tribution to the production of the free energy. For example, the first and third members in (3.2) describe the
VT exchange contribution, the second and fourth the VV exchange contribution, and the fifth the VV' process
contribution. The disappearance of the corresponding member in dF/dt determines the state of incomplete
statistical equilibrium in which the process under consideration and the preceding processes have already
terminated, while the next has still not started. Therefore, a representation of the hierarchy of quasiequili-
brium distributions occurs.

Quasiequilibrium distributions formed in each of the components by the fastest VV exchange processes
are at the lowest steps of this hierarchy. The distribution being formed under the effect of VV' exchange
occupies an intermediate position. Finally, the Boltzmann equilibrium distribution in which the VT exchange
results will close this hierarchy.

Let us examine each of these distributions individually.

1. Processes of VV exchange result in a distribution which is determined from the solution of the system
of equations
: xx.=xx, msnl=012 ... (3.8)

m's

If (3.8) is written in a form analogous to the conservation law
Inx), +Inx,=lnx +Inx, (3.9)

then it becomes clear that the system (3.9) will be satisfied by In xh, whichisa linear combination of quantities
being conserved during the collision (integrator invariants). Such quantities are the number of particles and
the number of vibrational quanta in single~quantum VV exchange. In fact, in the single~-quantum exchange
occurring by the vibrational transition scheme m, s—n, I, where n=m <1, =8 % 1, the total number of vibra-
tional quanta (as the total number of particles) is conserved; i.e., the number of vibrational quanta of each
molecule and one are the integrator invariants. Therefore,

Inx,=C-+Cpn (3.10)
or, after replacement of the primed by the unprimed quantities according to (3.2),
X, == Xy €xp (— yn — eX/kT). (3.11)

Theunknown constants C and Cy (or xp and 7) are determined by the total number of particles and the total
number of vibrational quanta in the system being conserved during VV exchange.

The distribution (3.11) is known as the Treanor distribution and was first obtained in [42] (see [43, 44]
also). It is convenient to express the constant y in terms of the "temperature® of the first vibrational level T,
determined by using the relationship

‘ x, = Xy exp (— ef/kT). _ . (3.12) .
In this case
4 A
S W _ (3.13)
KT, — TET

and the distribution (3.11) can be written in the form

ned nedt —gd
xn—;xoexp(~k—T]1— + #ITT—”) (3.14)

For T, > T the constant y<0; hence, for large n the population of the vibrational levels described by
the distribution (3.11) will be above the equilibrium distribution. The physical reason for the repopulation of
the upper vibrational levels because of VV exchange can be conceived if it is taken into account that the dynamic
equilibrium between the vibrational levels maintaining the Boltzmann distribution is spoiled with the reduction
of the translational temperature relative to the vibrational (T;>T). The transition of a large quantum from the
low vibrational levels into a smaller quantum of the upper levels hence turns out to be a more probable result
of VV exchange than the converse. A relative increase in the particle flux at the upper levels in comparison to
a reverse particle flux at the lower level will result in the stationary state corresponding to the equality of the
forward and reverse fluxes being achieved for large (as compared to the equilibrium) values of the upper level
population. Even the formation of population inversions is hence possible. The level ny, starting with which a
population inversion is observed in the Treanor distribution, is determined from the condition
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5— (yn - €4ET) = 0. (3.15)
n

If the zero level of the vibrational energy EﬁA’ is taken as origin, then we can write

gd = efn 4 Aen(n—1), (3.16)
where Ae=xjwy is the anharmonicity constant. Taking account of (3.16), there follows from (3.15)
ed T 1
Ty == ﬁ‘é—* _T? - T (317)

For example, for CO (8‘?‘ =2168cm=1, Ae=13 em™) n~ 12 whenT = 350°K and Ty =2500°K,

For T, <T the parameter ¥>0, hence in conformity with (3.11}, a lag in the population from the equilibrium
Boltzmann distribution will be observed starting with a certain n.

The case T; > T{y <0) is observed during energy pumping in the vibrational degrees of freedom of mole~
cules or during rapid expansion of a molecular gas; the opposite case T; <T(y>0) is realized in the relaxation
zone behind a shock front.

At low levels of the vibrational excitation, the nonequidistant vibrational levels can be neglected and a
harmonic oscillator model can be considered. In this case sﬁ =nz¥é and the distribution (3.11) goes over into a
Boltzmann distribution with the vibrational temperature T = T.

Let us emphasize that the separation between the vibrational and translational temperatures during gas
expansion underlies the operating principle of the gasdynamic laser [45-49].

The Treanor distribution (3.11) is a new kind of distribution in gas systems. It is formed under the effect
of VV exchange processes and hence is valid in the domain of vibrational levels where VV exchange processes
predominate over the VT relaxation processes [50].

2. The VV!' exchange processes form a distribution satisfying the system of equations
x"ny; == x"ly; . (3.18)

which must be considered in combination with the distribution (3.11) and an analogous distribution for y, since
Tvv is less or even much less than 7yvyt. This latter condition assures that the formation of the Treanor dis-
tributions will precede VV' exchange. If we limit ourselves to single~quantum VV'! exchange, i.e., consider that
n=m=1, =g ¥ 1, then the solution of the system (3.18) for the Treanor distribution functions x,,, and yg resuits
in the condition

Ya = Vg (3.19)
which can be written in the form
o T i (3.20)
kTS kTS kT

The relationship (3.20) relates the "temperature" of the first vibrational levels of the components A(T{%) and
B(TP) to the gas temperature. An analogous relationship for the "temperatures™ of the n-th level is discussed
in [51]. The vibrational temperature of the n-th level of the component A is determined from the relationship

Xn ’:x'o exp (— bl:/kTﬁ)

and analogously for the component B.

Therefore, VV exchange in each of the components results in a Treanor distribution without altering the
store of vibrational quanta in the components. Single-quantum VV' exchange processes synchronize the store
of vibrational quanta in both components in correspondence with (3.20) without changing the total number of
vibrational quanta in the system., '

The harmonic oscillator model is applicable at low vibrational excitation levels. In this case the situation
is simplified. The VV exchange processes result in the buildup of a Boltzmann distribution with its own vibra-
tional temperature in each of the components; single-quantum VV' exchange relates these temperatures
according to (3.20). Extension of (3.20) to the case of multiquantum VV! exchange is contained in [52, 53].

It follows from (3.20) that for sufficiently small T the vibrational temperature of the component with the
smaller vibrational quantum will be above the vibrational temperature of the second component. This fact was
observed experimentally. An excess of the vibrational temperature of CO (qCO= 3090°K) over N, (€1N2=3353°K)
{54] was detected during expansion of a mixture of CO and N, in a nozzle.
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The VV!' exchange processes can result in a number of interesting thermal effects. For instance, let the
whole vibrational energy of a binary mixture of gases A and B be concentrated at the initial instant in the
component B (zf‘> 81B). In this case, part of the vibrational energy of the component B will go over into the
vibrational energy of the component A, according to (3.20), in the single quantum VV' exchange process. Since

> qB and the number of quanta is conserved, this process will be accompanied by energy absorption of the
translational degrees of freedom, which will result in a lowering of the translational temperature. According
to estimates [55], the reduction in gas temperature for an equal concentration of components will be = 30°K in
a binary CO and N, mixture with the initial conditions: T=270°K is the translational temperature, TiNZ ~0, and
Ty -~ 3000°K is the vibrational temperature.

Let us emphasize that the maximum |AT| will be observed with the lapse of time ~ Tyy!- Because of the
VT exchange, the AT will later tend to zero. Therefore, an experimental study of the time dependence of AT
will, in principle, permit determination of the probabilities of VV' and VT exchange.

An interesting thermal effect occurs also when powerful CO, laser radiation passes through the atmo-
sphere [56]. Generally speaking, gas heating caused by radiation absorption occurs during laser radiation
propagation in the atmosphere. However, at the initial instants after the beginning of absorption, gas cooling
rather than heating can take place. The physical reason for this is the following. Radiation of a CO, laser is
absorbed in an atmosphere of CO; molecules, where the CO, molecules make the transition from the level
10°0 to the level 00°1. The level 00°1 of CO, is in resonance with the first vibrational level of Ny, hence, the
VV' exchange results in intensive pumping of energy from CO, into N;. The excess vibrational energy of CO,
and N, makes the transition because of VT exchange info thermal energy (into the energy of translational and
rotational degrees of freedom), which results in heating of the gas. On the other hand, the VT exchange proba-~
bility for the CO, 10°0 level is high compared to the analogous probability for the N, vibrational level. Hence,
destruction of the CO, 10°0 level because of resonance radiation absorption will be considerably more rapidly
compensated by fluxes of particles because of VT exchange than the N, excess vibrational energy will be
resorbed because of the slow VT exchange of the N, molecule. In this connection, energy evacuation from the
translational degrees of freedom and its storage in the vibrational degrees of freedom of the CO, and N, will
occur in the initial times after absorption, which indeed results in cooling of the gas. Let us note that the life-
time of the cooling effect is determined by the VT exchange probability and is around 10™?sec at-~ 1 tech, atm
pressure, while the degree of cooling at room temperature is on the order of 1°, An experimental study of the time
dependence of AT can be the source of information on the VT exchange probabilities.

3. The VT exchange processes result in a buildup of the total statistical equilibrium in the system. Their
role is to equilibrate all the "temperatures" in the system. Indeed, VT exchange forms a distribution subject
to the equations
X == (3.21)

For y=0, i.e., an equilibrium Boltzmann distribution with a temperature equal to the temperature of the trans-
lational degrees of freedom, the distribution (3.11) satisfies the system (3.21). Radiation transition must be
taken into account in addition to VT exchange for heteronuclear molecules. In this case the probabilities 2f,
in the collision operator Iy in (2.1) must be written in the form

‘&mn = ‘@Y/?m + (Amn "L anp)’ 'énm = g;?ln + Bnmp’ m>n, (3'22)

where Qﬁm is defined by (2.3). The A, and B, in (3.22) are Einstein coefficients, and p is the radiation
energy density. In isolated systems in which there is no energy and material exchange with the surrounding
sphere, p is the Planck distribution function under equilibrium conditions, If the relation between the Einstein
coefficients Ay and By and the relationship (2.4) are taken into account, then we can write

P 1 €XD (— em/kT) = P exp(— en/kT) (3.23)

and an analogous relationship for the component B. It follows autbmatically from (3.23) that the particle dis-
tribution in the vibrational levels in the equilibrium state is described by a Boltzmann distribution function.
Therefore, radiation transitions in isolated systems do not spoil the Boltzmann distribution [57].

The structure of the distribution hierarchy is determined by the relationship between the different
relaxation times. The nature of these relationships depends strongly on the mixture composition (especially in
mixtures of polyatomic gases) and on the vibrational-level rangeunder consideration. Nevertheless, the
approach elucidated, based on extraction of the fast and slow processes, turns out to be valid independently of
the specific form of the inequality (3.7).
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§4. Stationary Distributions

The hierarchy of quasiequilibrium distributions is observed in the evolution of the system from the
initial nonequilibrium state. In this case, the system passes through a sequence of quasiequilibrium distribu~
tions during the buildup of the total statistical equilibrium. One type of distribution is replaced by another
with time and with the change in time scale. This course of the distribution can be delayed if an external
effect, optical or electrical pumping, for instance, fixes the nonequilibrium population of some excited level.
A representation of a stationary distribution being formed under the effect of an external source* occurs by
such a means. The molecule distribution over the vibrational levels in the energy range beyond the limits of
source action reflects the solidified hierarchy in which one type of distribution is replaced by another, but in
the space of vibrational energies rather than in time. Thus, for instance, regions where single-quantum VV
exchange, VT processes, and transient modes predominate can be extracted in a stationary distribution in a
single-component system of anharmonic oscillators.

Single-quantum VV exchange plays the dominant part in the collision of molecules in the lower vibrational
levels. Hence, if the ratio between the populations of the zero and first vibrational levels is fixed, for example,
then the populations at the following low vibrational levels under stationary conditions will be determined by the
Treanor distribution (3.11) or (3.14).

The VT exchange plays the main role in the collision of molecules at the upper vibrational levels. The
VT exchange processes result in the buildup of a Boltzmann distribution with a vibrational temperature equal
to the temperature of the translation degrees of freedom at the upper levels. Meanwhile, the absolute popula-~
tion of the upper vibrational levels will be above the equilibrium value [for T, >T, see (3.12)] since the Boltz~
mann distribution should merge with the Treanor distribution or one similar in the domain of intermediate
vibrational energies, which exceeds the equilibrium distribution for T;>T.

The distribution function has the most complex form at intermediate vibrational levels since it is impos~-
sible to extract the dominant process in this range. It is nevertheless clear that the Treanor distribution func-
tion should go more or less smoothly over into the Boltzmann function in the intermediate range of vibrational
energies. Analytical expressions for the transition distribution function have been obtained in [30, 44, 61-63].
Let us emphasize that the distribution function in the intermediate energy range takes on the shape of a plateau
for a sufficiently large store of mean vibrational energy {64-68].

The existence of stationary or quasistationary distributions for different pumping methods discloses the
possibility of stimulating chemical reactions if they go through the vibrational excited state. Such stimaulation
can be accomplished by IR laser radiation, for example, by a singly~directed effect in the quasistationary reac-
tion stage. This method of controlling chemical reactions was first proposed in [27], and developed in [31, 32]
and other papers.

Another type of distribution occurs in the region where external pumping acts. Optical or electrical
pumping, which transfers a molecule from the m-~th into the n-th state, for instance, tends to equalize the popu-
lations of the m~th and n~th levels. In the limit case of very intense pumping, a columnar distribution with
equally probable molecule distribution over the 0—n vibrational levels is formed according to the scheme of
single~step transitions 0—1—2—...—n at the 0—n levels [69, 31]. A population inversion at levels near n can
occur in addition to equalization of the populations of the m-th and n~th levels under intense single-step pumping
m—n. Equalization of the populations constrains the rate of energy insertion during pumping. This question is
~ investigated in detail in [39].

Energy pumping, associated with the effect of positive or negative sources of vibrationally excited parti-
cles, can also result in the formation of quasistationary distributions. The negative source will hence diminish
the population and the positive will increase the population as compared to the instantaneous equilibrium
value. Let us note that the range of perturbations in the distribution function will be greater in the case of the
positive source, hence the occurrence of an absolute inversion is possible.

Systems with positive and negative sources of vibrationally excited particles model two large classes of
chemical reactions. The formation of products in vibrationally excited states is characteristic for the first
type of reaction (for exchange reactions between halogen atoms and hydrogen halide molecules, for example).
The second type of reaction is characterized by the fact that the reaction proceeds through the vibrationally

*The problem of constructing a statistical theory of gas systems with particle sources on the basis of the
Boltzmann kinetic equation was first posed in [58~60].
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excited state; i.e., it is accompanied by the disappearance of excited particles (thermal dissociation reaction,
for example). Theoretical computations of distributions occurring in these reactions are performed in [70-73,
37, 38].

Stationary vibrational-energy distributions also occur upon spoilage of the Maxwell velocity distribution
[74~76]. It is interesting to note that a Boltzmann distribution over the vibrational levels with a different
temperature than the translational is built up in a non-Maxwell thermostat during the vibrational relaxation of
harmonic oscillators if the translational temperature is determined in terms of the root-mean-square velocity
[77].

The representation of stationary or quasistationary distributions turns out to be valid only within definite
limits. The pumping constant in polyatomic molecules can result in the occurrence of self-oscillation modes.
Thus, a stationary regime does not occur for stationary pumping in an asymmetric CO, mode under specific
conditions since the rate of disintegration of a quantum of asymmetric vibrations into three quanta of a deformed
mode depends nonlinearly on the number of quanta of the deformed mode [78}. Hence, the rate of energy trans-
fer from the asymmetric to the deformation vibrations grows strongly with the growth in excitation of the
deformation mode. An increase in the rate of disintegration of the asymmetric vibrations increases the number
of deformation vibration quanta and, therefore, increases the rate of disintegration of the deformation quanta
still more. An instability appears which results in almost complete destruction of the asymmetric mode. If a
sufficiently rapid elimination of energy from the deformation mode is assured, then the state of the destructive
instability can go over into the self-oscillation regime. The effect mentioned can result in a peak generation
regime in CO,-based lasers [79, 80]. Instability of the nonequilibrium state of the molecular gas can also be
observed for a VT exchange if there is a strong dependence of the VT exchange probability on the gas tempera-
ture [81].

Conclusions

The stationary and quasistationary distribution functions of the vibrational energy considered in thig
survey include all the basic types of vibrational distributions and have a sufficiently general nature. This
generality is determined primarily by the fact that the stationary or quasistationary modes are, as a rule,
compulsory of any nonequilibrium process. The clarification of the governing role of the quasistationary stage
during a nonequilibrium process is the main result in the area of vibrational kinetics in recent years, which
discloses extensive possibilities for controlling nonequilibrium processes.
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